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Abstract
Background: The biological research literature is a major repository of knowledge. As the
amount of literature increases, it will get harder to find the information of interest on a particular
topic. There has been an increasing amount of work on text mining this literature, but comparing
this work is hard because of a lack of standards for making comparisons. To address this, we
worked with colleagues at the Protein Design Group, CNB-CSIC, Madrid to develop BioCreAtIvE
(Critical Assessment for Information Extraction in Biology), an open common evaluation of systems
on a number of biological text mining tasks. We report here on task 1A, which deals with finding
mentions of genes and related entities in text. "Finding mentions" is a basic task, which can be used
as a building block for other text mining tasks. The task makes use of data and evaluation software
provided by the (US) National Center for Biotechnology Information (NCBI).

Results: 15 teams took part in task 1A. A number of teams achieved scores over 80% F-measure
(balanced precision and recall). The teams that tried to use their task 1A systems to help on other
BioCreAtIvE tasks reported mixed results.

Conclusion: The 80% plus F-measure results are good, but still somewhat lag the best scores
achieved in some other domains such as newswire, due in part to the complexity and length of gene
names, compared to person or organization names in newswire.

Background
The biological research literature is a major repository of
knowledge. Unfortunately, the amount of literature has
gotten so large that it is often hard to find the information
of interest on a particular topic. There has been an increas-
ing amount of work on text mining for this literature, but
currently, there is no way to compare the systems devel-
oped because they are run on different data sets to per-
form different tasks [1]. Challenge evaluations have been
successful in making such comparisons. Examples include
the ongoing CASP evaluations (Critical Assessment of
Techniques for Protein Structure Prediction) for protein
structure prediction [2], the series of Message Understand-
ing Conferences (MUCs) for information extraction on
newswire text [3], and the ongoing Text Retrieval Confer-

ences (TREC) for information retrieval [4,5]. Also, in
2002, we ran the first challenge evaluation of text mining
for biology; this was an evaluation for classifying papers
and genes based on whether they contained experimental
evidence for gene products [6].

As mentioned in [6], the idea behind these series of open
evaluations has been to attract teams to work on a prob-
lem by providing them with real (or realistic) training and
test data, as well as objective evaluation metrics. These
data sets are often hard to obtain, and the open evaluation
makes it much easier for groups to build systems and
compare performance on a common problem. If many
teams are involved, the results are a measure of the state-
of-the-art for that task. In addition, when the teams share
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information about their approaches and the evaluations
are repeated over time, then the research community can
demonstrate measurable forward progress in a field.

To further the field of biological text mining, the BioCre-
AtIvE evaluation was run in 2003, with a workshop in
March 2004 to discuss the results [7]. The evaluation con-
sisted of two tasks: task 1 focused on extraction of gene
names (task 1A) and normalization of genes (task 1B)
from PubMed abstracts. Task 2 was a more advanced task
focused on functional annotation, using full text informa-
tion to classify a protein as to its molecular function, bio-
logical process and/or location within a cell [8]. This
paper reports on task 1A, entity mention extraction. This
extraction is a basic text mining operation. Its output is
the input text, annotated with the mentions of interest;
this can be used as a building block for other tasks, such
as task 1B and task 2.

The gene mention task presents a number of difficulties.
One difficulty is that gene (or protein) mentions are often
English common nouns (as opposed to proper nouns,
which, in English, are the nouns normally associated with
names) and they are often descriptions. In fact, many enti-
ties are named with ordinary words; examples from Dro-
sophila (fruit fly) gene names are blistery, inflated, period,
punt, vein, dorsal, kayak, canoe and midget. In addition, new
entities are constantly being discovered and/or renamed
with these common nouns. Many new names originate as
descriptions and can be quite complex, e.g., hereditary non-
polyposis colorectal cancer (hnpcc) tumor suppressor genes.

Task and data
The data and evaluation software for task 1A were pro-
vided by W. John Wilbur and Lorraine Tanabe at the
National Center for Biotechnology Information (NCBI).
Every mention of interest is marked, so this task corre-
sponds to the "named entity" task used in the natural lan-
guage processing community.

The data consists of sentences from Medline [9] abstracts
that have been manually annotated for mentions of
names of genes and related entities. Half of the sentences
were chosen from abstracts likely to contain such names.
The other half were chosen from abstracts likely not to
contain such names. See [10] (also in this volume) for fur-
ther detail on the construction of the task 1A data. The
approximate sizes of the various data sets are given in
Table 1.

Participants were provided with 7500 training sentences
and 2500 development test sentences. The (final) test set
(also known as "round1") consisted of 5000 sentences.
For the evaluation, its sentences were renumbered to give
no indication of what Medline abstracts they came from

(the original sentence numbers were derived in part from
the Medline/Pubmed id number of the abstract from
which the sentence was drawn).

The data is marked for mentions of "names" related to
genes, including binding sites, motifs, domains, proteins,
promoters, etc. The data comes with a particular tokeniza-
tion (word segmentation), and this tokenization deter-
mines the boundaries of what is marked. A token is either
entirely markable or not. A token cannot be split between
a marked part and an unmarked part. For example, if
"EGF-induced" is a token and one wants to mark the
"EGF" part of that token, then one also needs to mark the
"induced" part.

For testing, the systems take as input the tokenized unan-
notated sentences; the output is the list of gene names for
each sentence, with the start and stop token offsets. For
evaluation, the system output is then compared to the
"gold standard" hand-annotated answer key.

There is no detailed, multi-page explicit set of guidelines
describing what is markable. Instead, there is a description
provided with the data that gives a page or two listing of
the types of entities that are and are not markable. Exam-
ples of markables are mutants (e.g., p53 mutant) and
words like codon or antibody when combined with a gene
name. Examples of non-markables include generic terms
(e.g., the term zinc finger by itself) and mutations (e.g., p53
mutations).

Here are 2 excerpts from the training corpus (sentences
110312525757 and 13393732909):

The LMW FGF-2 up-regulated the PKC epsilon levels by
1.6 fold; by contrast the HMW isoform down-regulated
the level...

...a protein related to SNF1 protein kinase.

The underlines indicate the markable entities. The italic
boldface indicates what alternative mentions can substi-
tute for a markable. Note that for "SNF1" and "protein
kinase", an allowed alternative is "SNF1 protein kinase",
which includes both of them.

Table 1: Data set size

Data Set Sentences Gene Mentions

training 7500 9000
(development) test 2500 3000
(final) test 5000 6000
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The answer file for the sentences contains the following
mentions: "LMW FGF-2", "PKC epsilon", "HMW iso-
form", "SNF1" and "protein kinase".

Stored in another file are the alternative mentions that can
be tagged and still count as being correct. For the answers
mentioned above, here are the allowed alternative men-
tions: "FGF-2", "PKC", "HMW", and "SNF1 protein
kinase".

When scoring, an exact match to an answer or an allowed
alternative is needed to get credit for finding an answer.
So, for example, if for the answer LMW FGF-2, a system
instead returns "The LMW FGF-2", that system would get
both a false negative (not matching the answer or its alter-
native) and also a false positive (the returned item does
not match an answer or any alternative).

Results
15 teams entered submissions for this evaluation. Sub-
missions were classified as either "open" or "closed".   

Closed: The system producing the submission is only
trained on the task 1A "train" and "(development) test"
(devtest) data sets, with no additional lexical resources.   

Open: The system producing the submission can make
use of external word lists, other data sets, etc.    

Most teams provided an "open/closed" classification for
their submissions. If they did not, we made a classification
based on a short system description that the teams pro-
vided. When we were not sure, we assumed "open".

Teams were allowed to send up to 4 submissions each, as
long as they included a "closed" submission. Teams only
sending "open" submissions were allowed to send up to 3
submissions. We received a total of 21 "closed" submis-
sions (plus 2 more received late and deemed "unofficial")
and 19 "open" submissions (also plus 2 more received
late and deemed "unofficial").  

The submissions were measured by their balanced F-score,
recall and precision.   

• Balanced F-score is the harmonic mean between recall
and precision.    

Balanced F-score = 2*Recall*Precision/(Recall + Preci-
sion)    

• Recall is the fraction or percentage of the answers in the
answer key that were found by a submission.    

• Precision is the fraction or percentage of the answers
returned by a submission that are scored as correct.  

Scores achieved by the submissions
Many of the high performing submissions achieved scores
quite close together. For example, with balanced F-score,
the first and second highest teams were only 0.6% apart,
and the second and third highest teams were even closer,
at 0.2% apart. This is close enough to possibly be affected
by the disagreements in annotation that arise with just
about any task on finding entity mentions. An example is
that with this particular task, a partial review of the test set
changed 0.4% (25 of 6000) of the answers.

These differences are also close enough so that they are
often not statistically significant. At a normal threshold of
5% (or lower) for statistical significance, the difference
between the first and third highest teams was borderline
statistically significant, while the difference between the
first and second highest teams (as well as between the sec-
ond and third highest teams) was not statistically
significant.

Computationally-intensive randomization tests [11] (a
type of stratified shuffling [12](Sec. 2.7)) were used to test
statistical significance. Like most significance tests, 2 vari-
ants exist

1. A 1-sided version: under the null hypothesis, how likely
will the higher ranked submission be better than the
lower ranked submission by at least the observed
difference?

2. A 2-sided version: under the null hypothesis, how likely
will the difference between the two submissions (in either
direction) be at least the observed difference?

The 2-sided version is more demanding and will, for the
same score difference, produce about twice the probabil-
ity of the 1-sided version. Complicating the shuffling
done in the tests for these results was the existence of alter-
native answers, so that the correspondence between cor-
rect responses and answers in the key was not one-to-one.
Another complication was that due to the format for sub-
missions, no submission could give responses that over-
lapped with each other.

Comparing the first and third highest teams, the 1-sided
test produced a significance level of 4.9%, while the 2-
sided produced 9.7% (809 and 1594 out of 16384 trials,
respectively). Comparing the first and second highest
teams, the 1-sided test was 11% and the 2-sided was 22%
(3621 and 7236 out of 32768 trials). Comparing the sec-
ond and third highest teams, the 1-sided test was 34% and
the 2-sided was 68% (351 and 709 out of 1039 trials).
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Table 2 shows the high and low scores, as well as the 1st,
2nd (median) and 3rd quartile balanced-F, recall and preci-
sion scores for the 40 official submissions. Table 3 shows
the balanced-F scores of the 40 official plus 4 unofficial
submissions. The submissions are grouped by the team
that generated the submission, each team is labeled with
a letter ("A" through "O") and the teams are sorted by
their best F score. One can see a compression or skew of
the scores towards the high end.

• The high, 1st, 2nd and even 3rd quartile scores are rela-
tively close to each other compared to the low scores

• With F-score, the top 3 teams had F-scores within 1% of
each other

• With recall, the top 2 teams were separated by 2.2% in
recall

• With precision, the top 2 teams were separated by 0.9%
in precision

The difference in recall was statistically significant: 0 out
of 3437 trials passed the threshold for either the 1-sided
or 2-sided test. The difference in precision was not statis-
tically significant: 6.8% for the 1-sided test and 14% for
the 2-sided (1110 and 2310 out of 16384 trials). The F-
score differences were discussed above.

Generally, the open submissions did better than the
closed submissions. An exception is that for the highest
recall score, the top closed score was actually better than
the top open score. The compression of the high scores
also occurred when comparing the open and closed
submissions.

• For the higher scores (like high and 1st quartile), there
was little difference (2% or less) between the open and
closed submission scores

• For the lower scores (like low and 3rd quartile), the open
submissions scores were measurably better than the
closed scores

Figure 1 shows the balanced-F scores of the 40 official plus
4 unofficial submissions. The open submissions are in a
dark solid blue and the closed submissions are in white
with a lighter red outline. As in Table 3, the submissions
are grouped by the team that generated the submission,
each team is labeled with a letter ("A" through "O") and
the teams are sorted by their best F score. 13 official sub-
missions from 4 different teams achieved an F-score of
80% or higher (in the figure, this appears as 0.8 or
higher). For most teams, their open submission(s) scored
higher than their closed submission(s). Team B was an
exception, as was team A to some extent. Generally, the
gap between a team's open and closed submissions was
small compared to the gap between the submissions from
different teams. However, team O, which did not do well,
had a large gap between their open and closed
submissions.

Figure 2 shows a plot of the precision versus recall of the
40 official plus 4 unofficial submissions. The official open
submissions are shown with dark (blue) diamonds, the
official closed submissions are shown with lighter (red)
squares. Unofficial submissions are shown with gray out-
lines (and clear centers) of diamonds and squares, respec-
tively. Eight official submissions (from 3 different teams)
achieved both a recall and precision of 80% or higher
(appears in the figure as 0.8 or higher). As a set, the sub-
missions with both a recall and precision of 60% or more
seem to have a fairly balanced precision and recall. But for
the most part, submissions which had a recall or precision
below 60% tended to have a better recall than precision.

Some observations
Like many name identification tasks, task 1A has its own
unique features. Most teams made use of the training data
in their system development. However, in reading the task

Table 2: F-score, recall and precision quartiles for the 40 official submissions

Balanced F-score Recall Precision

open closed open closed open closed

High 83% 83% 84% 85% 86% 86%
Quartile 1 81% 80% 81% 79% 83% 81%
Median (Q2) 78% 74% 74% 72% 80% 72%
Quartile 3 67% 59% 70% 62% 72% 53%
Low 25% 16% 42% 36% 17% 11%
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1A participants' system descriptions [7], team K did not.
Also, as far as we can tell, neither did team M (based on a
short description not in the reference). This is probably a

reason why, relative to the other teams, these two teams
did not get very good results: K's submission had a 61%
balanced F-score, while M's submission had 55% (both in

Table 3: F-score, recall and precision for the 40+4 submissions

Team Open/closed precision recall balanced-f unofficial?

A closed 0.792 0.854 0.822
A open 0.828 0.835 0.832
A open 0.831 0.805 0.818
A open 0.841 0.814 0.827

B closed 0.800 0.805 0.802
B closed 0.805 0.808 0.806
B closed 0.820 0.832 0.826
B open 0.751 0.813 0.781

C closed 0.819 0.761 0.789
C open 0.845 0.784 0.813
C closed 0.830 0.773 0.801
C open 0.864 0.787 0.824

D closed 0.804 0.801 0.803
D open 0.803 0.814 0.809
D closed 0.803 0.805 0.804 unofficial
D open 0.801 0.818 0.809

E open 0.825 0.742 0.781
E open 0.823 0.743 0.781
E open 0.823 0.741 0.780

F closed 0.855 0.689 0.763
F closed 0.843 0.718 0.775

G closed 0.712 0.781 0.745
G open 0.738 0.799 0.767
G closed 0.707 0.785 0.744

H open 0.800 0.685 0.738
H open 0.637 0.697 0.666
H open 0.632 0.705 0.667

I closed 0.698 0.719 0.708
I closed 0.719 0.706 0.712
I closed 0.763 0.617 0.683
I open 0.722 0.727 0.724

J open 0.558 0.681 0.613

K open 0.555 0.683 0.612 unofficial

L closed 0.501 0.719 0.591
L closed 0.529 0.707 0.605
L closed 0.578 0.592 0.585

M open 0.784 0.418 0.545

N closed 0.323 0.568 0.412
N closed 0.315 0.567 0.405
N closed 0.311 0.579 0.404

O closed 0.151 0.332 0.208 unofficial
O closed 0.107 0.356 0.164
O open 0.384 0.432 0.407 unofficial
O open 0.169 0.457 0.247
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the 4th quartile range for official open submissions). One
indication of these unique features comes from Tamames
[13](Discussion of the results – task 1A), whose system
had not considered entities like domains, regions and
mutants as "gene names" that should be marked, where as
task 1A did include such entities.

A common comment from several task 1A participants
(for example, see the post-processing descriptions in Din-
gare [14](sec. 2.3) and Kinoshita [15](sec. 3)) was that
one of the more difficult aspects of task 1A was determin-
ing the starting and ending boundaries of the gene-or-pro-

tein names. The requirement for an exact match to the
answer key (or alternative) increased the difficulty.

As has been mentioned, many of the open and closed sub-
missions achieved fairly close results. One possible reason
for this is that, to the extent that this task is unique, out-
side sources will not help performance that much. When
comparing the results between different teams, another
possible reason is that for the most part, we relied on the
teams themselves to classify their submissions as being
"open or closed". In viewing the task 1A system descrip-
tions [7], one can see that the different teams varied in
what resources they thought were allowed in a closed sub-
mission. As an example, when using a sub-system that
generates part-of-speech (POS) tags, some (but not all)
teams use such a POS sub-system for a "closed" submis-
sion even when the sub-system itself was trained on
another annotated corpus, an indirect reliance on an
outside corpus. Some teams treated this indirect reliance
as permissible for a closed submission (for example, Din-
gare [14](sec. 2.1) and Zhou [16](sec. 1)), some teams did
not.

Summary of system descriptions
For task 1A, the teams tended to use one of the three fol-
lowing approaches at the top level of their system (see the
participants' system descriptions [7]):

1. Some type of Markov modelling.

2. Support vector machine (SVM). Typically, the input
information on the word being classified would come
from a small window of the words near that word of
interest.

3. Rules. As far as we could tell, the rules were usually
manually generated.

Many of the systems had pre- and/or post-processing
stages in addition to the main approach taken. One sys-
tem combined several other systems via a voting scheme
[16].

The teams used a variety of features in their systems. Many
teams used entire sub-systems to find the values of certain
features. An example is using a part-of-speech (POS) tag-
ger to find a word's part-of-speech. These sub-systems
often used an approach that differed from the overall sys-
tem's approach.

The four teams with 80% or higher F-scores had post-
processing stages in addition to the main approach taken,
and made use of many different features. All four of these
teams performed some type of Markov modelling at the
system's top level [14-17]. However, the teams used

Balanced F-scores of the 40+4 submissionsFigure 1
Balanced F-scores of the 40+4 submissions.

Precision versus recall of the 40+4 submissionsFigure 2
Precision versus recall of the 40+4 submissions.
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different techniques on their Markov models: maximum
entropy, hidden Markov models (HMM) and conditional
random fields. In addition, one team [16], also had an
SVM system at the top level: decisions were made by
having two HMMs and an SVM system vote. Also, note
that when comparing different systems, the choice of fea-
tures used is often at least as important as the approach/
algorithm used. Yeh [18] gives an example of this.

Task 1A as a building block
One reason for evaluating on task 1A is that a task 1A sys-
tem can serve as a building block for other tasks, like task
1B or task 2 of the BioCreAtIvE evaluation. The task 1B
evaluation focused on finding the list of the distinct genes
(of a particular species) mentioned in a Medline abstract,
where the list contained the normalized, unique identifi-
ers for those genes. Task 2 focused on functional annota-
tion (classifying what a protein does and where in a cell it
is found), and on returning text passages as evidence to
support these classifications.

To what extent was it viable to use task 1A systems as a
building block for more advanced capabilities? It turns
out that three of the teams taking part in task 1A also took
part in task 1B. In addition, one of the three teams also
took part in a portion of task 2. So an interesting question
is whether these three teams found their task 1A systems
to be useful when working on task 1B or 2.

One team (from BioAlma) with a high precision (80%+)
task 1A system used the mentions found by their 1A sys-
tem as the input for their 1B system [13](Task 1B): their
1B system then tried to find the normalized version of the
mentions found by their task 1A system.

The story was more complicated for two other teams with
both high precision (80%+) and high recall (78%+) task
1A systems. One team was from Pennsylvania (1A: [17],
1B: [19]). The other team was from Edinburgh and Stan-
ford (1A: [14], 1B: [20]). Both these teams looked at some
version of finding mentions with their task 1A system and
then compared the found mentions against the synonym
lists for the genes of interest for task 1B. Both teams found
that this approach could easily produce a low precision
for 1B, due to ambiguity (many genes sharing many of the
same synonyms).

The Pennsylvania team also found that for genes from two
(fly and yeast) of the three organisms of interest in task 1B
(mouse was the 3rd organism), the task 1A tagger was not
that accurate. A possible explanation given was that the
task 1A training data did not have enough examples from
these two organisms. For task 1B, the Pennsylvania team
in the end did not use their task 1A tagger.

The Edinburgh/Stanford team found that using the origi-
nal task 1A training set and lots of features tended to lower
their recall of the 1B genes. They raised the recall by
retraining their 1A system using the noisy task 1B training
data and a reduced set of the possible features.

The Edinburgh/Stanford team also took part in task 2.1. In
this task, a system was given an article, a protein men-
tioned in that article, and a classification of that protein
that a person made based on that article. The system's job
was to find a passage of text in that article that supported
the classification made for that protein. The description
for the team's task 2.1 system [21] made no mention of
using their task 1A system or trying it on some part of task
2.1.

Discussion
One unique aspect of the data: enforcing a particular 
tokenization
As mentioned before, every entity mention task such as
task 1A will have some features that are more or less
unique to it. For task 1A, one such feature is that the data
comes with a particular tokenization (word segmenta-
tion). Furthermore, this tokenization affects what counts
as a mention, because either all of a token is tagged as part
of a mention, or none of that token is tagged. This can
cause problems when one just wants to tag part of a token
as part of a mention. An example is the phrase "a protein
kinase A-mediated pathway", shown in Figure 3, with the
red vertical bars indicating the word token boundaries.
Here the token "A-mediated" is not useful, since the men-
tion that one would really like to tag is "protein kinase A".

This tokenization is important because it affects what
counts as a mention; below are some rules (Lorraine Tan-
abe, personal communication):

1. If "X" is a token which is a gene name, then "X" is usu-
ally marked. An example is "CBF1" in the phrase "... of
CBF1 in yeast ..." (in training data's sentence
90233781202).

2. If a token is of the form "X-" or "X-Y", where "X" is a
gene name and "Y" is an adjective or verb, then the token
is usually NOT marked. An example is "EGF-induced" in
the phrase "... block EGF-induced mitogenesis and ... " (in
training data's sentence 94547351603).

Sample phrase with problematic tokenization (red vertical bars give tokenization boundaries)Figure 3
Sample phrase with problematic tokenization (red vertical 
bars give tokenization boundaries).
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3. An exception to 2.: when the Y in "X-Y" is "like", then
"X-Y" is usually marked (for example, "PRL-like"). Also, if
the form is "X-Y Z", where "X-Y" is as in (2), and "Z" is a
token like "domain", then "X-Y" is usually marked as part
of the mention "X-Y Z". An example is "SH2-binding
domain".

Disagreements in the data
In tasks like task 1A, small disagreements usually exist on
what to annotate and what not to annotate. An example
in task 1A is phrases of the form "X pathway(s)", where X
is a phrase that is marked as part of a gene mention. An
initial review of the test set found the following annota-
tion variations (afterwards, all test set cases were changed
to have "X" and "X pathway(s)" both allowed as alterna-
tive answers):

• 4 cases where "X pathway(s) was NOT an allowed alter-
native to "X". An example was X = "Mek-Erk1/2" in the
phrase

"... the Mek-Erk1/2 pathway by ..." (sentence 14076).

• 10 cases where "X" and "X pathway(s)" were both
allowed alternatives. An example was X = "Ras/Raf/
MAPK" in the phrase

"... the Ras/Raf/MAPK pathway." (sentence 10544).

Similarly, the training set had

• 12 cases where "X pathway(s)" was NOT an allowed
alternative to "X".

• 11 cases where "X pathway(s)" and "X" were allowed
alternative answers.

Such variation in annotation makes it more difficult to
learn or to formulate a rule for how to handle these kinds
of constructions.

Lessons learned for future evaluations
If and when a future task 1A evaluation is run, we list the
following issues to consider:

1. Tokenization is non-trivial for biological terms. Per-
haps one should not enforce a fixed tokenization of the
data. This non-enforcement will be expensive because it
requires changing both how the data is annotated and
how the system results are compared against the gold
standard.

2. On a related matter, because of the difficulties in exactly
determining a mention's boundaries, there is interest in
also counting inexact matches to answers as being correct.

This must be defined carefully. For example, if missing
either the first or last token still counts as correct, then just
returning "epsilon" would count as finding "PKC
epsilon".

3. For open versus closed submissions, we should either
remove the distinction, or be more explicit as to what is
allowed for a closed submission.

4. A suggestion was made to pad the test set with extra
material that would not be scored, which would make it
harder to "cheat" by manually examining the test set. If
this were done, one would need to announce this ahead
of time. One reason is that some automated approaches
need more processing time than others. Another reason is
that some automated approaches, such as transductive
support vector machines [22], make use of statistics
derived from the entire un-annotated test set.

5. At least one team [14] automatically searched for the
PubMed/Medline abstract associated with each test set
sentence. They used the abstract as a surrounding context,
and it seemed to be helpful. In many "real uses" of a task
1A system, a system will probably have such surrounding
text. So it may make sense to just give these abstracts to
every participant in the future.

6. There is also a question of what is a permissible
resource to use:

• One example is that with PubMed/Medline, a system
could also look-up MESH terms, etc. associated with the
Medline abstract for each sentence. If a tagging system is
applied before an abstract is assigned MESH labels
(assignment is done manually), then such information
will not be available in real usage, and such information
should not be permitted.

• Given a possible entity "X", at least one team [14] did
web searches for contexts like "X gene", which support "X"
being a possible entity. This seemed to be of limited help.
Should this be permitted in the future? This probably
depends on the anticipated "real" uses for such a feature.
When tagging older material (such as the task 1A test set),
the web will have relevant material. When tagging new
text that describes new gene(s), the web will probably not
have much, if any material.

Conclusion
For the BioCreAtIvE task 1A of gene mention finding, a
number of teams achieved an 80–83% balanced F-score.
Unless a system was not performing well, using external
resources (being "open" instead of "closed") did not seem
to help that much. These 80%+ results are similar to
results for some other similar biological mention finding
Page 8 of 10
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tasks, and are somewhat behind the 90%+ balanced F-
scores achieved on English newswire named entity tasks
[23].

Based on an observation offered by Kevin Cohen (associ-
ated with the system described in [15]), one hypothesis
for the discrepancy is that gene names tend to be longer
(in word count) than comparable newswire names. To
investigate this, we compared the length distribution of
gene names in the test set for task 1A; this distribution is
shown in Figure 4, and is compared to the distribution for
name length of organization names in a newswire task.
The newswire results are computed from the MUC-6 data,
which is available from the Linguistic Data Consortium
[24]. The average length of the task 1A gene names was
2.09, compared to 1.69 for ORGANIZATION names in
the MUC-6 data. Given this distribution, we fitted a sim-
ple logistic regression model to both data sets. We mod-
eled the performance (balanced F-score) for a name of n
words as (E)n, where E is the performance on a single-
word name. This allowed us to extrapolate back to a sin-
gle-word error rate for both tasks, allowing us to factor out
differences in name length. For gene names, a 91% suc-
cess rate on a single word gene name gave an overall task
performance of 83%, the observed high score. For the
MUC-6 organization names, a 95.5% single word success
rate yielded a 93% success rate overall, which was the
highest recorded result for MUC-6. In using this simple
model, we recognize that it is not mathematically valid to
use F-measure in place of accuracy. However, it does pro-
vide a crude approximation for how much of the task dif-
ficulty can be attributed to difference in name lengths

among different tasks. This comparison leaves a residual
4–5% discrepancy between performance on the tasks for
the single-word case. We hypothesize that this may be due
to interannotator variability, leading to "noise" in the
training and test data. For the MUC-7 task [25], interan-
notator agreement was measured at 97%, which is almost
certainly significantly higher than for the gene mention
task, which has not yet been formally measured. This var-
iability affected at least one high performing task 1A sys-
tem [26](Discussion). The Discussion section of this
paper gives some sample disagreements in the task 1A
data.

In terms of successful approaches, the teams that achieved
an 80% or more balanced F-score tended to use some type
of Markov modelling at the top system level. However,
these teams also had post-processing stages in addition to
the main approach taken, and the different teams made
use of different features. These stages and features can
have just as much an effect on performance as the main
approach taken.

One of the reasons to have task 1A is that it should be a
useful building block to work on other tasks, like
BioCreAtIvE task 1B. Three teams tried using their task 1A
system for task 1B. Their experiences were mixed, with
two of the three teams finding that a task 1A system
trained on the task 1A training data often did not work so
well on task 1B. One of these two teams improved things
by retraining their 1A system using the noisy task 1B data.

A 2nd test set is available for task 1A, so it would be
straightforward to run a task 1A evaluation in the future
using this 2nd test set. Four questions to think about in any
future evaluation are the following:

• What will it take to improve task 1A performance?

• How much will improving task 1A performance help
with other tasks (like tasks 1B and 2)?

• How can one make a task 1A system be a more useful
building block for other tasks?

• Why are outside resources not more useful in task 1A? Is
it because task 1A is unique?
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